This biology image could be re-created using vector graphics as an SVG file. This has several advantages; see Commons:Media for cleanup for more information. If an SVG form of this image is available, please upload it and afterwards replace this template with {{vector version available|new image name}}.
It is recommended to name the SVG file “A range of putative disease-causing mechanisms for the case of HGPS.svg”—then the template Vector version available (or Vva) does not need the new image name parameter.
This biology image was uploaded in the JPEG format even though it consists of non-photographic data. This information could be stored more efficiently or accurately in the PNG or SVG format. If possible, please upload a PNG or SVG version of this image without compression artifacts, derived from a non-JPEG source (or with existing artifacts removed). After doing so, please tag the JPEG version with {{Superseded|NewImage.ext}} and remove this tag. This tag should not be applied to photographs or scans. If this image is a diagram or other image suitable for vectorisation, please tag this image with {{Convert to SVG}} instead of {{BadJPEG}}. If not suitable for vectorisation, use {{Convert to PNG}}. For more information, see {{BadJPEG}}.
DescriptionA range of putative disease-causing mechanisms for the case of HGPS.jpg
English: Potential mechanisms of disease. A range of molecular and cellular mechanisms are likely to contribute to the diverse phenotypes that are seen in the laminopathies, and these mechanisms probably vary depending on the specific mutation. Here, as an example, we show a range of putative disease-causing mechanisms for the case of Hutchinson-Gilford Progeria Syndrome, in which lamin A is permanently farnesylated in the form of progerin. We predict that progerin becomes entrapped in the nuclear membrane as a result of permanent farnesylation, resulting in a multitude of downstream effects. Disruption of the normal lamina architecture leads to fragility, vulnerability to mechanical stresses and nuclear blebbing. Other consequences include disrupted interactions with other nuclear envelope proteins – such as nesprin, emerin and laminaassociated protein 2 (LAP2) – which leads to their mislocalization (that is, emerin is relocalized to the cytoplasm in Lmna -/- mice)74 and clustering of nuclear pores. Disorganization and loss of peripheral heterochromatin is also seen, with heterochromatin becoming detached from the nuclear envelope, and disrupted interactions with RNA polymerase II, RNA splicing factors and transcription factors such as the retinoblastoma transcriptional regulator (RB) and sterol response element binding protein (SREBP1), which leads to misregulation of gene expression. GCL, germ cell-less [9]. Coutinho et al. Immunity & Ageing 2009 6:4 doi:10.1186/1742-4933-6-4
Русский: Возможные механизмы патогенеза детской прогерии, связанной с мутациями гена, кодирующего ламин A.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
to share – to copy, distribute and transmit the work
to remix – to adapt the work
Under the following conditions:
attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
https://creativecommons.org/licenses/by/2.0CC BY 2.0 Creative Commons Attribution 2.0 truetrue
Captions
Add a one-line explanation of what this file represents
{{Information |Description={{en|1=Potential mechanisms of disease. A range of molecular and cellular mechanisms are likely to contribute to the diverse phenotypes that are seen in the laminopathies, and these mechanisms probably vary depending on the spec