Jump to content

Carol A. Carter

From Wikipedia, the free encyclopedia
(Redirected from Draft:Carol A. Carter)
Carter in 2021

Carol A. Carter is an American microbiologist. She is Distinguished Professor in the Department of Microbiology and Immunology of the Renaissance School of Medicine at Stony Brook University, and member of the National Academy of Sciences.[1]

Early life and education

[edit]

Carter grew up in Harlem with parents who stressed the importance of education, though they had only a seventh grade education.[2] Carter's interest in becoming a scientist was encouraged by a grade school teacher who gave her a book about inventors.[3] She earned her undergraduate degree from City College of New York[2] and went on to earn a Ph.D. from Yale University.[1]

Carter began graduate school in a bacteriophage laboratory before switching to animal virology,[3] training under virologist and epidemiologist Francis L. Black.[2] She discovered that measles virus has a nuclear phase of replication and that different strains of the virus cause acute measles versus subacute sclerosing panencephalitis.[2] She was influenced by Matthew Scharff of Albert Einstein College of Medicine, who pioneered the use of HeLa cells for cultivating animal viruses.[3] Carter did her postdoctoral work on double-stranded RNA viruses known as reoviruses in the laboratory of Aaron Shatkin. From her graduate work, Carter brought with her a trick for growing measles virus in culture: adding Kaopectate.[2]

Career

[edit]

In 1975, Carter joined the faculty of SUNY Stony Brook as assistant professor under department chair Joseph Kates, who discovered polyA on mRNA.[2] Carter continued working on reoviruses. After a sabbatical year studying the tumor virus SV40 in the laboratory of Carol Prives at Columbia University, she felt that the SV40 field was overcrowded, and sought a new field just at the time that HIV research was in its infancy.[3]

With poliovirus expert Eckard Wimmer, Carter studied how HIV cleaves a precursor polyprotein to make infectious particles,[4][5] a strategy also used by poliovirus.[2][6]

Carter investigated the mechanisms of HIV capsid particle assembly. Mentoring biochemist Lorna Ehrlich, the two helped demonstrate that recombinant HIV-1 p24 capsid protein could oligomerize in vitro.[3][7] Together with X-ray crystallographer Michael Rossmann, and NMR spectroscopists Mike Summers and Wes Sundquist, Carter solved the structure of the p24 capsid protein.[8][3]

Using a yeast-two hybrid library screen, Carter's graduate student Beth Agresta identified Tsg (tumor susceptibility gene)101, a novel cellular protein that interacts with HIV-1 Gag protein.[3][9] Carter and her trainees Fadila Bouamr, Traci LaGrassa, Lynn VerPlank, Jay Goff and Gisselle Medina established how Tsg101-Gag interactions lead HIV to escape degradation,[10] undergo budding,[11][12][13] and effect particle assembly[14][15] and release.[16][17][18][19] Carter identified how Tsg101 recruits calcium signaling machinery[20][21] to endosomal sorting complexes required for transport (ESCRT),[22] thus stabilizing viral assembly at the budding site. She continued working, with Jon Leis, to identify small molecules that target Tsg101 and other budding factors.[23][24][25]

Awards

[edit]

Carter has received several awards:[1]

Personal life

[edit]

Carter enjoys walking on the beach and hosting gatherings for her husband, son and extended family.[3]

References

[edit]
  1. ^ a b c "Carol A. Carter". National Academy of Sciences. Retrieved 29 October 2024.
  2. ^ a b c d e f g Azvolinsky, Anna (2015-05-01). "Putting It Together". The Scientist Magazine®. Retrieved 2024-10-28.
  3. ^ a b c d e f g h Carter, Carol; Kutluay, Sebla B. (2021-07-01). "Interview with a Retrovirologist: Sebla B. Kutluay in conversation with Carol Carter". Retrovirology. 18 (1). Springer Science and Business Media LLC. doi:10.1186/s12977-021-00562-4. ISSN 1742-4690. PMC 8256644.
  4. ^ EHRLICH, LORNA S.; KRAUSSLICH, HANS-GEORG; WIMMER, ECKARD; CARTER, CAROL A. (1990). "Expression inEscherichiacoli and Purification of Human Immunodeficiency Virus Type 1 Capsid Protein (p24)". AIDS Research and Human Retroviruses. 6 (10). Mary Ann Liebert Inc: 1169–1175. doi:10.1089/aid.1990.6.1169. ISSN 0889-2229.
  5. ^ Kräusslich, H G; Ingraham, R H; Skoog, M T; Wimmer, E; Pallai, P V; Carter, C A (1989). "Activity of purified biosynthetic proteinase of human immunodeficiency virus on natural substrates and synthetic peptides". Proceedings of the National Academy of Sciences. 86 (3). Proceedings of the National Academy of Sciences: 807–811. doi:10.1073/pnas.86.3.807. ISSN 0027-8424. PMC 286566.
  6. ^ Kräusslich, H G; Schneider, H; Zybarth, G; Carter, C A; Wimmer, E (1988). "Processing of in vitro-synthesized gag precursor proteins of human immunodeficiency virus (HIV) type 1 by HIV proteinase generated in Escherichia coli". Journal of Virology. 62 (11). American Society for Microbiology: 4393–4397. doi:10.1128/jvi.62.11.4393-4397.1988. ISSN 0022-538X. PMC 253881.
  7. ^ Ehrlich, L S; Agresta, B E; Carter, C A (1992). "Assembly of recombinant human immunodeficiency virus type 1 capsid protein in vitro". Journal of Virology. 66 (8). American Society for Microbiology: 4874–4883. doi:10.1128/jvi.66.8.4874-4883.1992. ISSN 0022-538X. PMC 241323.
  8. ^ Prongay, A J; Smith, T J; Rossmann, M G; Ehrlich, L S; Carter, C A; McClure, J (1990). "Preparation and crystallization of a human immunodeficiency virus p24-Fab complex". Proceedings of the National Academy of Sciences. 87 (24). Proceedings of the National Academy of Sciences: 9980–9984. doi:10.1073/pnas.87.24.9980. ISSN 0027-8424. PMC 55298.
  9. ^ VerPlank, Lynn; Bouamr, Fadila; LaGrassa, Tracy J.; Agresta, Beth; Kikonyogo, Alexandra; Leis, Jonathan; Carter, Carol A. (2001-06-26). "Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55 Gag". Proceedings of the National Academy of Sciences. 98 (14). Proceedings of the National Academy of Sciences: 7724–7729. doi:10.1073/pnas.131059198. ISSN 0027-8424. PMC 35409.
  10. ^ Carter, Carol A (2002). "Tsg101: HIV-1's ticket to ride". Trends in Microbiology. 10 (5). Elsevier BV: 203–205. doi:10.1016/s0966-842x(02)02350-8. ISSN 0966-842X.
  11. ^ Watanabe, Susan M; Chen, Min-Huei; Khan, Mahfuz; Ehrlich, Lorna; Kemal, Kimdar Sherefa; Weiser, Barbara; Shi, Binshan; Chen, Chaoping; Powell, Michael; Anastos, Kathryn; Burger, Harold; Carter, Carol A (2013-11-21). "The S40 residue in HIV-1 Gag p6 impacts local and distal budding determinants, revealing additional late domain activities". Retrovirology. 10 (1). Springer Science and Business Media LLC. doi:10.1186/1742-4690-10-143. ISSN 1742-4690. PMC 3907034.
  12. ^ Pincetic, Andrew; Medina, Gisselle; Carter, Carol; Leis, Jonathan (2008). "Avian Sarcoma Virus and Human Immunodeficiency Virus, Type 1 Use Different Subsets of ESCRT Proteins to Facilitate the Budding Process". Journal of Biological Chemistry. 283 (44). Elsevier BV: 29822–29830. doi:10.1074/jbc.m804157200. ISSN 0021-9258. PMC 2573067.
  13. ^ Kikonyogo, Alexandra; Bouamr, Fadila; Vana, Marcy L.; Xiang, Yan; Aiyar, Ashok; Carter, Carol; Leis, Jonathan (2001-09-18). "Proteins related to the Nedd4 family of ubiquitin protein ligases interact with the L domain of Rous sarcoma virus and are required for gag budding from cells". Proceedings of the National Academy of Sciences. 98 (20). Proceedings of the National Academy of Sciences: 11199–11204. doi:10.1073/pnas.201268998. ISSN 0027-8424. PMC 58707.
  14. ^ Scarlata, Suzanne; Carter, Carol (2003). "Role of HIV-1 Gag domains in viral assembly". Biochimica et Biophysica Acta (BBA) - Biomembranes. 1614 (1). Elsevier BV: 62–72. doi:10.1016/s0005-2736(03)00163-9. ISSN 0005-2736.
  15. ^ Provitera, P.; Goff, A.; Harenberg, A.; Bouamr, F.; Carter, C.; Scarlata, S. (2001-04-11). "Role of the Major Homology Region in Assembly of HIV-1 Gag". Biochemistry. 40 (18). American Chemical Society (ACS): 5565–5572. doi:10.1021/bi002040l. ISSN 0006-2960.
  16. ^ Goff, A.; Ehrlich, L. S.; Cohen, S. N.; Carter, C. A. (2003). "Tsg101 Control of Human Immunodeficiency Virus Type 1 Gag Trafficking and Release". Journal of Virology. 77 (17). American Society for Microbiology: 9173–9182. doi:10.1128/jvi.77.17.9173-9182.2003. ISSN 0022-538X. PMC 187429.
  17. ^ Medina, G. N.; Ehrlich, L. S.; Chen, M. H.; Khan, M. B.; Powell, M. D.; Carter, C. A. (2011-07-15). "Sprouty 2 Binds ESCRT-II Factor Eap20 and Facilitates HIV-1 Gag Release". Journal of Virology. 85 (14). American Society for Microbiology: 7353–7362. doi:10.1128/jvi.00141-11. ISSN 0022-538X. PMC 3126580.
  18. ^ Ehrlich, Lorna S.; Medina, Gisselle N.; Khan, Mahfuz B.; Powell, Michael D.; Mikoshiba, Katsuhiko; Carter, Carol A. (2010). "Activation of the Inositol (1,4,5)-Triphosphate Calcium Gate Receptor Is Required for HIV-1 Gag Release". Journal of Virology. 84 (13). American Society for Microbiology: 6438–6451. doi:10.1128/jvi.01588-09. ISSN 0022-538X. PMC 2903246.
  19. ^ Ehrlich, Lorna S.; Medina, Gisselle N.; Carter, Carol A. (2011). "Sprouty2 Regulates PI(4,5)P2/Ca2+ Signaling and HIV-1 Gag Release". Journal of Molecular Biology. 410 (4). Elsevier BV: 716–725. doi:10.1016/j.jmb.2011.04.069. ISSN 0022-2836. PMC 3139110.
  20. ^ Ehrlich, Lorna S.; Medina, Gisselle N.; Photiadis, Sara; Whittredge, Paul B.; Watanabe, Susan; Taraska, Justin W.; Carter, Carol A. (2014-05-20). "Tsg101 regulates PI(4,5)P2/Ca2+ signaling for HIV-1 Gag assembly". Frontiers in Microbiology. 5. Frontiers Media SA. doi:10.3389/fmicb.2014.00234. ISSN 1664-302X. PMC 4033031.
  21. ^ Ehrlich, Lorna S.; Carter, Carol A. (2012-06-12). "HIV Assembly and Budding: Ca2+ Signaling and Non-ESCRT Proteins Set the Stage". Molecular Biology International. 2012. Hindawi Limited: 1–12. doi:10.1155/2012/851670. ISSN 2090-2182.
  22. ^ Yondola, Mark; Carter, Carol (2011-01-18). "Un-"ESCRT"-ed Budding". Viruses. 3 (1). MDPI AG: 26–31. doi:10.3390/v3010026. ISSN 1999-4915.
  23. ^ Strickland, Madeleine; Ehrlich, Lorna S.; Watanabe, Susan; Khan, Mahfuz; Strub, Marie-Paule; Luan, Chi-Hao; Powell, Michael D.; Leis, Jonathan; Tjandra, Nico; Carter, Carol A. (2017-11-09). "Tsg101 chaperone function revealed by HIV-1 assembly inhibitors". Nature Communications. 8 (1). Springer Science and Business Media LLC. doi:10.1038/s41467-017-01426-2. ISSN 2041-1723. PMC 5680296.
  24. ^ Watanabe, Susan M.; Strickland, Madeleine; Tjandra, Nico; Carter, Carol A. (2020-04-15). "RNA Binding Suppresses Tsg101 Recognition of Ub-Modified Gag and Facilitates Recruitment to the Plasma Membrane". Viruses. 12 (4). MDPI AG: 447. doi:10.3390/v12040447. ISSN 1999-4915. PMC 7232412.
  25. ^ Strickland, Madeleine; Nyenhuis, David; Watanabe, Susan M.; Tjandra, Nico; Carter, Carol A. (2021-06-15). "Novel Tsg101 Binding Partners Regulate Viral L Domain Trafficking". Viruses. 13 (6). MDPI AG: 1147. doi:10.3390/v13061147. ISSN 1999-4915. PMC 8232796.
[edit]