Jump to content

Conchoid of de Sluze

From Wikipedia, the free encyclopedia
(Redirected from Conchoid of de sluze)
The Conchoid of de Sluze for several values of a

In algebraic geometry, the conchoids of de Sluze are a family of plane curves studied in 1662 by Walloon mathematician René François Walter, baron de Sluze.[1][2]

The curves are defined by the polar equation

In cartesian coordinates, the curves satisfy the implicit equation

except that for a = 0 the implicit form has an acnode (0,0) not present in polar form.

They are rational, circular, cubic plane curves.

These expressions have an asymptote x = 1 (for a ≠ 0). The point most distant from the asymptote is (1 + a, 0). (0,0) is a crunode for a < −1.

The area between the curve and the asymptote is, for a ≥ −1,

while for a < −1, the area is

If a < −1, the curve will have a loop. The area of the loop is

Four of the family have names of their own:

References

[edit]
  1. ^ Smith, David Eugene (1958), History of Mathematics, Volume 2, Courier Dover Publications, p. 327, ISBN 9780486204307.
  2. ^ "Conchoid of de Sluze by J. Dziok et al.on Computers and Mathematics with Applications 61 (2011) 2605–2613" (PDF).