Jump to content

Classifying space for O(n)

From Wikipedia, the free encyclopedia
(Redirected from Classifying space for O)

In mathematics, the classifying space for the orthogonal group O(n) may be constructed as the Grassmannian of n-planes in an infinite-dimensional real space .

Cohomology ring

[edit]

The cohomology ring of with coefficients in the field of two elements is generated by the Stiefel–Whitney classes:[1][2]

Infinite classifying space

[edit]

The canonical inclusions induce canonical inclusions on their respective classifying spaces. Their respective colimits are denoted as:

is indeed the classifying space of .

See also

[edit]

Literature

[edit]
  • Milnor, John; Stasheff, James (1974). Characteristic classes (PDF). Princeton University Press. doi:10.1515/9781400881826. ISBN 9780691081229.
  • Hatcher, Allen (2002). Algebraic topology. Cambridge: Cambridge University Press. ISBN 0-521-79160-X.
  • Mitchell, Stephen (August 2001). Universal principal bundles and classifying spaces (PDF).{{cite book}}: CS1 maint: year (link)
[edit]

References

[edit]
  1. ^ Milnor & Stasheff, Theorem 7.1 on page 83
  2. ^ Hatcher 02, Theorem 4D.4.