Jump to content

Debaryomyces hansenii

From Wikipedia, the free encyclopedia
(Redirected from Candida famata)

Debaryomyces hansenii
Scientific classification
Kingdom:
Division:
Class:
Order:
Family:
Genus:
Species:
D. hansenii
Binomial name
Debaryomyces hansenii
(Zopf) Lodder & Kreger-van Rij (1984)
Synonyms
  • Saccharomyces hansenii Zopf (1889)

Debaryomyces hansenii, also known as Candida famata, is a species of yeast in the family Saccharomycetaceae.

Pathogenicity

[edit]

Debaryomyces hansenii accounts for up to 2% of invasive candidiasis cases.[1] It has been found in Crohn's disease ulcerations in humans and is being investigated as the environmental trigger of Crohn's disease.[2][3] Certain strains of Debaryomyces hansenii have been researched for potential use as probiotics and may have health benefits.[4][5]

Ecology

[edit]

Debaryomyces hansenii is an osmo-, halo- and xerotolerant yeast[6] that produces toxins, including mycocins, to destroy competitive yeast species.[5] It is a common species in all types of cheese, including soft cheeses and the brines of semi-hard and hard cheeses,[7] and the most common yeast among 383 isolates from samples of unsulfited or sulfited sausages, skinless sausages and minced beef.[8] It contributes to the fermentation of barrel-aged beers such as Le Coq Imperial Stout from Harveys Brewery in southern England. Harvey's head brewer speculates that it is either airborne in the brewery or a slow-growing component of their house yeast blend.[9] D. hansenii is also found in hyper-saline waters such as the salterns on the Atlantic coast of Namibia or in the Great Salt Lake of Utah.[6]

Nutritional requirements

[edit]

The species can be cultivated in media with up to 25% NaCl or 18% glycerol.[6] Growth rate increases in solutions with ≥ 1M NaCl or KCl, with sodium and potassium ions playing a very important role in the mechanisms involved in maintaining osmobalance. The species can survive a pH range between 3 and 10. Furthermore, D. hansenii has been described as the species with the highest perchlorate tolerance reported to date, which might have consequences for the microbial habitability of Mars, where perchlorate salts are widely distributed.[10]

Reproduction

[edit]

Most strains are haploid, mating very rarely and diploidize transiently by somatogamous autogamy (i.e. fusion of two cells but excluding their nuclei). Sexual reproduction proceeds via heterogamous conjugation (i.e. the conjugation of two cells of different form or size) leading to short diplophase followed by meiosis and ascospore formation.[6] Haploid yeasts reproduce vegetatively by multilateral budding.

Genetics

[edit]

This species has seven chromosomes, labeled A-G. This species uses an alternative genetic code for the codon CUG, coding for the amino acid serine instead of the usual leucine.[11]

Differentiation

[edit]

The ability of this species to grow at 10% NaCl or 5% glucose is used to discriminate D. hansenii from other ascomycetous yeasts.[6] The species comprises two varieties: D. hansenii var. hansenii and var. fabryii. These two groups can be differentiated via rRNA, the electrophoretic mobility of their glucose-6-phosphate dehydrogenase, or by their maximum grow temperatures (35 °C for var. hansenii and 39 °C for var. fabryii).

Biotechnology

[edit]

The species has been demonstrated to synthesize useful quantities of D-arabinitol, riboflavin, xylitol, and pyruvic acid under thiamine limitation.[6] The species has also been used to decarboxylate ferulic acid to 2-Methoxy-4-vinylphenol via biotransformation (a 95.07% yield, 1470.8 mg/L, within 10 hours).[12]

References

[edit]
  1. ^ Beyda ND, Chuang SH, Alam MJ, et al. (February 2013). "Treatment of Candida famata bloodstream infections: case series and review of the literature". The Journal of Antimicrobial Chemotherapy. 68 (2): 438–443. doi:10.1093/jac/dks388. PMID 23085777.
  2. ^ Reynolds, Sharon (March 29, 2021). "Fungi may impair wound healing in Crohn's disease". National Institutes of Health (NIH). Retrieved January 27, 2023.
  3. ^ Jain U, Ver Heul AM, Xiong S, et al. (March 2021). "Debaryomyces is enriched in Crohn's disease intestinal tissue and impairs healing in mice". Science. 371 (6534): 1154–1159. Bibcode:2021Sci...371.1154J. doi:10.1126/science.abd0919. PMC 10114606. PMID 33707263. S2CID 232199817.
  4. ^ Ochangco HS, Gamero A, Smith IM, et al. (September 2016). "In vitro investigation of Debaryomyces hansenii strains for potential probiotic properties". World Journal of Microbiology & Biotechnology. 32 (9): 141. doi:10.1007/s11274-016-2109-1. PMID 27430508.
  5. ^ a b Banjara N, Nickerson KW, Suhr MJ, Hallen-Adams HE (April 2016). "Killer toxin from several food-derived Debaryomyces hansenii strains effective against pathogenic Candida yeasts". International Journal of Food Microbiology. 222 (2): 23–9. doi:10.1016/j.ijfoodmicro.2016.01.016. PMID 26828815.
  6. ^ a b c d e f Breuer U, Harms H (April 2006). "Debaryomyces hansenii--an extremophilic yeast with biotechnological potential". Yeast. 23 (6): 415–437. doi:10.1002/yea.1374. PMID 16652409. S2CID 26399411.
  7. ^ Fleet GH (March 1990). "Yeasts in dairy products". The Journal of Applied Bacteriology. 68 (3): 199–211. doi:10.1111/j.1365-2672.1990.tb02566.x. PMID 2187843.
  8. ^ Dalton HK, Board RG, Davenport RR (1984). "The yeasts of British fresh sausage and minced beef". Antonie van Leeuwenhoek. 50 (3): 227–248. doi:10.1007/BF02342134. PMID 6486769. S2CID 20503633.
  9. ^ Jackson M (6 April 2001), Washington hosts historic tasting of British and Irish classics
  10. ^ Heinz J, Krahn T, Schulze-Makuch D (April 2020). "A New Record for Microbial Perchlorate Tolerance: Fungal Growth in NaClO4 Brines and its Implications for Putative Life on Mars". Life. 10 (5): 53. doi:10.3390/life10050053. PMC 7281446. PMID 32353964.
  11. ^ "Debaryomyces hansenii (ID 195) - Genome - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2020-12-31.
  12. ^ Mathew S, Abraham TE, Sudheesh S (2007). "Rapid conversion of ferulic acid to 4-vinyl guaiacol and vanillin metabolites by Debaryomyces hansenii". Journal of Molecular Catalysis B: Enzymatic. 44 (2): 48–52. doi:10.1016/j.molcatb.2006.09.001.
[edit]