Arthrobacter globiformis
Arthrobacter globiformis | |
---|---|
Scientific classification | |
Domain: | Bacteria |
Phylum: | Actinomycetota |
Class: | Actinomycetia |
Order: | Micrococcales |
Family: | Micrococcaceae |
Genus: | Arthrobacter |
Species: | A. globiformis
|
Binomial name | |
Arthrobacter globiformis corrig. (Conn 1928) Conn and Dimmick 1947 (Approved Lists 1980)
| |
Type strain | |
ATCC 8010[1] BCRC 10598 CCRC 10598 CCUG 12157 CCUG 28997 CCUG 581 CGMCC 1.1894 CIP 81.84 DSM 20124 HAMBI 1863 HAMBI 88 IAM 12438 ICPB 3434 IFO 12137 JCM 1332 LMG 3813 NBRC 12137 NCIB 8907 NCIMB 8907 NRIC 151 NRRL B-2979 VKM Ac-1112 | |
Synonyms | |
Corynebacterium globiforme,
|
Arthrobacter globiformis is a Gram-positive bacterium species from the genus of Arthrobacter.[1][2]
Description and Significance
[edit]Arthrobacter globiformis was first discovered by H. J. Conn in 1928. This bacteria was initially found in large quantities in various types of soil.[3][2] They start as Gram-negative rods before becoming Gram-positive cocci over time. They may also become large, oval-shaped cells called cystite by growing them in very high carbon to nitrogen ratio environments.[2][4][5] These bacteria have cell walls that contain polysaccharides (with monomers glucose, galactose, and rhamnose), peptidoglycan, and phosphorus.[4] They may also have flagella as well.[6] Notably, A. globiformis and its antigens and proteins are commercially available for use in research, food production, biodegradation, and water/wastewater treatment.[7]
Metabolism
[edit]A. globiformis can break down substances in the soil such as agricultural chemicals, chromium, etc. They are primarily aerobic, but they can survive anaerobically using lactate, acetate, and ethanol producing fermentation for growth.[2] Most are heterotrophic, meaning they cannot produce their own food. The choline oxidase activity of A. globiformis has been extensively characterized and is important for the production of glycine betaine, one of the few soluble osmotic regulators used by most cells.[8]
Genome and Genetics
[edit]The complete genome of A. globiformis has been sequenced using whole-genome shotgun sequencing. The genomes of three strains are available for public use.[9] The genome is approximately 4.89 million base pairs long, containing 4305 proteins and a 66.1% GC content.[9] Two major phylogenetic clades exist within the Arthrobacter genus, the A. globiformis/A. citreus group and the A. nicotianae group.[10] These two clades differ mainly in their peptidoglycan structure, teichoic acid content, and lipid composition.[10]
Further reading
[edit]- Eschbach, Martin; Möbitz, Henrik; Rompf, Alexandra; Jahn, Dieter (June 2003). "Members of the genus Arthrobacter grow anaerobically using nitrate ammonification and fermentative processes: Anaerobic adaptation of aerobic bacteria abundant in soil". FEMS Microbiology Letters. 223 (2): 227–230. doi:10.1016/S0378-1097(03)00383-5. PMID 12829291. S2CID 14027236.
- Sharma, Meenakshi; Mishra, Vandana; Rau, Nupur; Sharma, Radhey Shyam (December 2015). "Increased iron-stress resilience of maize through inoculation of siderophore-producing from mine". Journal of Basic Microbiology. 56 (7): 719–735. doi:10.1002/jobm.201500450. PMID 26632776. S2CID 22533369.
- Sawai, Teruo; Yamaki, Takahiro; Ohya, Toshihide (9 September 2014). "Purification and Some Properties of Exo-l,6--glucosidase". Agricultural and Biological Chemistry. 40 (7): 1293–1299. doi:10.1080/00021369.1976.10862217.
- NISHIZAWA, Masako; YABUSAKI, Yoshiyasu; KANAOKA, Masaharu (22 May 2014). "Identification of the Catalytic Residues of Carboxylesterase from by Diisopropyl Fluorophosphate-Labeling and Site-Directed Mutagenesis". Bioscience, Biotechnology, and Biochemistry. 75 (1): 89–94. doi:10.1271/bbb.100576. PMID 21266781.
- Ramanujam, Praveen Kumar; Jayaraman, Jayamuthunagai; Gautam, Pennathur (11 January 2016). "Evaluation of production and kinetics parameters of rare sugar (D-tagatose) using biocatalyst". Management of Environmental Quality. 27 (1): 71–78. doi:10.1108/MEQ-07-2015-0124.
- Garrity, George M., ed. (2012). Bergey's manual of systematic bacteriology (2nd ed.). New York: Springer Science + Business Media. ISBN 978-0-387-68233-4.
- Rosa Margesin; Franz Schinner, eds. (1999). Cold-Adapted Organisms Ecology, Physiology, Enzymology and Molecular Biology. Berlin, Heidelberg: Springer Berlin Heidelberg. ISBN 3-662-06285-2.
- Wijffels, R.H.; Buitelaar, R.M.; Bucke, C.; Tramper, J., eds. (1996). Immobilized Cells Basics and Applications. Burlington: Elsevier. ISBN 0-08-053447-3.
- Goldman, Emanuel; Green, Lorrence H., eds. (2009). Practical handbook of microbiology (2nd ed.). Boca Raton: CRC Press. ISBN 978-1-4200-0933-0.
References
[edit]- ^ a b LPSN lpsn.dsmz.de
- ^ a b c d Eschbach, Martin; Möbitz, Henrik; Rompf, Alexandra; Jahn, Dieter (June 2003). "Members of the genus Arthrobacter grow anaerobically using nitrate ammonification and fermentative processes: Anaerobic adaptation of aerobic bacteria abundant in soil". FEMS Microbiology Letters. 223 (2): 227–230. doi:10.1016/S0378-1097(03)00383-5. PMID 12829291. S2CID 14027236.
- ^ Conn, H. J. (1928). A Type of Bacteria Abundant in Productive Soils, But Apparently Lacking in Certain Soils of Low Productivity. Cornell University.
- ^ a b Duxbury, T.; Gray, T. R. G.; Sharples, G. P. (1977). "Structure and Chemistry of Walls of Rods, Cocci and Cystites of Arthrobacter globiformis". Microbiology. 103 (1): 91–99. doi:10.1099/00221287-103-1-91. ISSN 1465-2080.
- ^ Stevenson, I. L. (August 1963). "Some Observations on the So-Called 'Cystites' of the Genus Arthrobacter". Canadian Journal of Microbiology. 9 (4): 467–472. doi:10.1139/m63-060.
- ^ García-López, María-Luisa; Santos, Jesús-Ángel; Otero, Andrés (1999-01-01). Robinson, Richard K. (ed.). "Micrococcus". Encyclopedia of Food Microbiology. Oxford: Elsevier: 1344–1350. ISBN 978-0-12-227070-3. Retrieved 2022-03-15.
- ^ "Arthrobacter globiformis - information sheet". Health Canada. 2018-02-23. Retrieved 2022-03-15.
- ^ Gadda, Giovanni (2020-01-01). Chaiyen, Pimchai; Tamanoi, Fuyuhiko (eds.). "Chapter Six - Choline oxidases". The Enzymes. Flavin-Dependent Enzymes: Mechanisms, Structures and Applications. 47. Academic Press: 137–166. doi:10.1016/bs.enz.2020.05.004. PMID 32951822. S2CID 221826501. Retrieved 2022-03-15.
- ^ a b "Arthrobacter globiformis (ID 12154)". NCBI Genome. Retrieved 2022-03-15.
- ^ a b "Home - Arthrobacter sp. FB24". Joint Genome Institute. Retrieved 2022-03-15.
External links
[edit]