Jump to content

(668643) 2012 DR30

From Wikipedia, the free encyclopedia
(Redirected from 2012 DR30)

(668643) 2012 DR30
2012 DR30 in a precovery image taken by the Sloan Digital Sky Survey in 2000
Discovery[1][2][3]
Discovered bySpacewatch
Discovery siteKitt Peak Obs.
Discovery date31 March 2009
(first observed only)
Designations
2012 DR30
  • 2012 DR30
  • 2009 FW54
Orbital characteristics[1][a]
Epoch 27 April 2019 (JD 2458600.5)
Uncertainty parameter 1
Observation arc14.72 yr (5,375 d)
Aphelion3192 AU
2049 AU (barycentric)
Perihelion14.5 AU
1603.44 AU
1032 AU (barycentric)
Eccentricity0.9909
64207 yr
33100 yr (barycentric)
0.0453°
0° 0m 0s / day
Inclination77.986°
341.48°
≈ 16 March 2011[7]
195.57°
Jupiter MOID9.311 AU
Saturn MOID5.45 AU[2]
Uranus MOID3.32 AU[2]
TJupiter0.9860
Physical characteristics
19.9[8]
7.1[1][2]

(668643) 2012 DR30 is a trans-Neptunian object and centaur from the scattered disk and/or inner Oort cloud, located in the outermost region of the Solar System. The object with a highly eccentric orbit of 0.99 was first observed by astronomers with the Spacewatch program at Steward Observatory on 31 March 2009.[2] It measures approximately 188 kilometers (120 miles) in diameter.

Description

[edit]

Using an epoch of February 2017, it has the second-largest heliocentric semi-major axis of a minor planet not detected out-gassing like a comet.[9] (2014 FE72 has a larger heliocentric semi-major axis.) 2012 DR30 does have a barycentric semi-major axis of 1032 AU.[10][a] For the epoch of July 2018 2012 DR30 will have its largest heliocentric semi-major axis of 1644 AU.

Orbital evolution
Year[a]
(epoch)
Barycentric
Aphelion (Q)
(AU)
Orbital
period
years
1950 2000 32000
2050 2049 33100

2012 DR30 passed 5.7 AU from Saturn in February 2009 and came to perihelion in March 2011 at a distance of 14.5 AU from the Sun (inside the orbit of Uranus).[1] In 2018, it will move from 18.2 AU to 19.1 AU from the Sun.[8] It comes to opposition in late March. With an absolute magnitude (H) of 7.1,[2] the object has a published diameter of 185 and 188 kilometers, respectively.[5][6]

With an observation arc of 14.7 years,[1] it has a well constrained orbit. It will not be 50 AU from the Sun until 2047. After leaving the planetary region of the Solar System, 2012 DR30 will have a barycentric aphelion of 2049 AU with an orbital period of 33100 years.[a] In a 10 million year integration of the orbit, the nominal (best-fit) orbit and both 3-sigma clones remain outside 12.2 AU (qmin) from the Sun.[4] Summary of barycentric orbital parameters are:

Archived data from the JPL SBDB and MPC.[b][c]

Comparison

[edit]
The orbits of Sedna, 2012 VP113, Leleākūhonua, and other very distant objects along with the predicted orbit of Planet Nine. The three sednoids (pink) along with the red-colored extreme trans-Neptunian object (eTNO) orbits are suspected to be aligned with the hypothetical Planet Nine while the blue-colored eTNO orbits are anti-aligned. The highly elongated orbits colored brown include centaurs and damocloids with large aphelion distances over 200 AU.

See also

[edit]

Notes

[edit]
  1. ^ a b c d e f g Given the orbital eccentricity of this object, different epochs can generate quite different heliocentric unperturbed two-body best-fit solutions to the semi-major axis and orbital period. For objects at such high eccentricity, the Sun's barycenter is more stable than heliocentric coordinates.[11] Using JPL Horizons, the barycentric semi-major axis is approximately 1032 AU.[10]
  2. ^ a b Archived JPL Small-Body Database Browser: (2012 DR30) from 15 October 2014.
  3. ^ a b Archived MPC object data for 2012 DR30 (2009 FW54) from 12 July 2013.

References

[edit]
  1. ^ a b c d e f "JPL Small-Body Database Browser: (2012 DR30)" (2014-12-17 last obs.). Jet Propulsion Laboratory. Archived from the original on 27 July 2020. Retrieved 19 November 2018.
  2. ^ a b c d e f g "2012 DR30". Minor Planet Center. Archived from the original on 15 February 2017. Retrieved 19 November 2018.
  3. ^ Ernesto Guido; Giovanni Sostero & Nick Howes (27 February 2012). "Trans-Neptunian Object 2012 DR30". Remanzacco Observatory in Italy. Archived from the original on 25 March 2018. Retrieved 25 August 2013.
  4. ^ a b Marc W. Buie. "Orbit Fit and Astrometric record for 12DR30". SwRI – Space Science Department. Archived from the original on 5 February 2016. Retrieved 1 February 2016.
  5. ^ a b c d Kiss, Cs.; Szabó, Gy.; Horner, J.; Conn, B. C.; Müller, T. G.; Vilenius, E.; et al. (July 2013). "A portrait of the extreme solar system object 2012 DR30". Astronomy and Astrophysics. 555: 13. arXiv:1304.7112. Bibcode:2013A&A...555A...3K. doi:10.1051/0004-6361/201321147. S2CID 54021504.
  6. ^ a b c d e f Johnston, Wm. Robert (7 October 2018). "List of Known Trans-Neptunian Objects". Johnston's Archive. Archived from the original on 23 October 2019. Retrieved 19 November 2018.
  7. ^ JPL Horizons Archived 28 November 2020 at the Wayback Machine Observer Location: @sun
  8. ^ a b "AstDyS 2012DR30 Ephemerides". Department of Mathematics, University of Pisa, Italy. Archived from the original on 3 May 2024. Retrieved 14 February 2017. (Distance to Sun [R] from first day of 2016 to first day of 2020. Assuming average apparent magnitude for 2017.)
  9. ^ "JPL Small-Body Database Search Engine: Asteroids and a > 100 (AU)". JPL Solar System Dynamics. Archived from the original on 29 November 2020. Retrieved 15 October 2014.
  10. ^ a b Horizons output. "Barycentric Osculating Orbital Elements for 2012 DR30". Archived from the original on 28 November 2020. Retrieved 6 March 2014. (Solution using the Solar System Barycenter and barycentric coordinates. Select Ephemeris Type:Elements and Center:@0)
  11. ^ Kaib, Nathan A.; Becker, Andrew C.; Jones, R. Lynne; Puckett, Andrew W.; Bizyaev, Dmitry; Dilday, Benjamin; et al. (April 2009). "2006 SQ372: A Likely Long-Period Comet from the Inner Oort Cloud". The Astrophysical Journal. 695 (1): 268–275. arXiv:0901.1690. Bibcode:2009ApJ...695..268K. doi:10.1088/0004-637X/695/1/268. S2CID 16987581.
[edit]